# Deep Neural Network for Image Classification: Application
# ## 1 - Packages
import time
import numpy as np
import h5py
import matplotlib.pyplot as plt
import scipy
from PIL import Image
from scipy import ndimage
from dnn_app_utils_v3 import *
# ## 2 - Dataset
train_x_orig, train_y, test_x_orig, test_y, classes = load_data()
index = 10
plt.imshow(train_x_orig[index])
m_train = train_x_orig.shape[0]
num_px = train_x_orig.shape[1]
m_test = test_x_orig.shape[0]
# Reshape the training and test examples
train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T
test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T
# Standardize data to have feature values between 0 and 1.
train_x = train_x_flatten/255.
test_x = test_x_flatten/255.
### CONSTANTS DEFINING THE MODEL ####
n_x = 12288 # num_px * num_px * 3
n_h = 7
n_y = 1
layers_dims = (n_x, n_h, n_y)
def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075,
num_iterations = 3000, print_cost=False):
grads = {}
costs = []
m = X.shape[1]
(n_x, n_h, n_y) = layers_dims
parameters = initialize_parameters(n_x, n_h, n_y)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
# Loop (gradient descent)
for i in range(0, num_iterations):
A1, cache1 = linear_activation_forward(X, W1, b1, 'relu')
A2, cache2 = linear_activation_forward(A1, W2, b2, 'sigmoid')
cost = compute_cost(A2, Y)
dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))
dA1, dW2, db2 = linear_activation_backward(dA2, cache2, 'sigmoid')
dA0, dW1, db1 = linear_activation_backward(dA1, cache1, 'relu')
grads['dW1'] = dW1
grads['db1'] = db1
grads['dW2'] = dW2
grads['db2'] = db2
parameters = update_parameters(parameters, grads, learning_rate)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
# Print the cost every 100 training example
if print_cost and i % 100 == 0:
print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))
if print_cost and i % 100 == 0:
costs.append(cost)
# plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()
return parameters
parameters = two_layer_model(
train_x, train_y, layers_dims = (n_x, n_h, n_y),
num_iterations = 2500, print_cost=True)
predictions_train = predict(train_x, train_y, parameters)
predictions_test = predict(test_x, test_y, parameters)
layers_dims = [12288, 20, 7, 5, 1]
def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075,
num_iterations = 3000, print_cost=False):
costs = []
parameters = initialize_parameters_deep(layers_dims)
# Loop (gradient descent)
for i in range(0, num_iterations):
AL, caches = L_model_forward(X, parameters)
cost = compute_cost(AL, Y)
grads = L_model_backward(AL, Y, caches)
parameters = update_parameters(parameters, grads, learning_rate)
# Print the cost every 100 training example
if print_cost and i % 100 == 0:
print ("Cost after iteration %i: %f" %(i, cost))
if print_cost and i % 100 == 0:
costs.append(cost)
# plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()
return parameters
Coding Summary
2018년 3월 27일 화요일
2018년 3월 26일 월요일
Neural Network (Week 4) : Step By Step
# ## 1 - Packages
import numpy as np
import h5py
import matplotlib.pyplot as plt
from testCases_v4 import *
from dnn_utils_v2 import sigmoid, sigmoid_backward, relu, relu_backward
# ## 2 - Outline of the Assignment
def initialize_parameters_deep(layer_dims):
parameters = {}
L = len(layer_dims)
for l in range(1, L):
parameters['W' + str(l)] =
np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.01
np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.01
parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
return parameters
def linear_forward(A, W, b):
Z = np.dot(W , A) + b
cache = (A, W, b)
return Z, cache
def linear_activation_forward(A_prev, W, b, activation):
if activation == "sigmoid":
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = sigmoid(Z)
elif activation == "relu":
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = relu(Z)
cache = (linear_cache, activation_cache)
return A, cache
def L_model_forward(X, parameters):
caches = []
A = X
L = len(parameters) // 2
for l in range(1, L):
A_prev = A
A, cache = linear_activation_forward(
A_prev, parameters['W' + str(l)], parameters['b' + str(l)], 'relu')
caches.append(cache)
AL, cache = linear_activation_forward(
A, parameters['W' + str(L)], parameters['b' + str(L)], 'sigmoid')
caches.append(cache)
return AL, caches
def compute_cost(AL, Y):
m = Y.shape[1]
cost = (-1/m) * np.sum(Y * np.log(AL) + (1-Y) * np.log(1-AL), axis=1)
cost = np.squeeze(cost)
return cost
def linear_backward(dZ, cache):
A_prev, W, b = cache
m = A_prev.shape[1]
dW = (1/m) * np.dot(dZ , A_prev.T)
db = (1/m) * np.sum(dZ, axis = 1, keepdims = True)
dA_prev = np.dot(W.T , dZ)
return dA_prev, dW, db
def linear_activation_backward(dA, cache, activation):
linear_cache, activation_cache = cache
if activation == "relu":
dZ = relu_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
elif activation == "sigmoid":
dZ = sigmoid_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
return dA_prev, dW, db
def L_model_backward(AL, Y, caches):
grads = {}
L = len(caches) # the number of layers
m = AL.shape[1]
Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
current_cache = caches[L-1]
grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] =
linear_activation_backward(dAL, current_cache, 'sigmoid')
# Loop from l=L-2 to l=0
for l in reversed(range(L-1)):
current_cache = caches[l]
dA_prev_temp, dW_temp, db_temp =
linear_activation_backward(grads["dA" + str(l+1)], current_cache, 'relu')
grads["dA" + str(l)] = dA_prev_temp
grads["dW" + str(l + 1)] = dW_temp
grads["db" + str(l + 1)] = db_temp
return grads
def update_parameters(parameters, grads, learning_rate):
L = len(parameters) // 2 # number of layers in the neural network
for l in range(L):
parameters["W" + str(l+1)] =
parameters["W" + str(l+1)] - learning_rate * grads["dW" + str(l+1)]
parameters["W" + str(l+1)] - learning_rate * grads["dW" + str(l+1)]
parameters["b" + str(l+1)] =
parameters["b" + str(l+1)] - learning_rate * grads["db" + str(l+1)]
parameters["b" + str(l+1)] - learning_rate * grads["db" + str(l+1)]
return parameters
Neural Network (Week 3) : One hidden layer
# ## 1 - Packages ##
# Package imports
import numpy as np
import matplotlib.pyplot as plt
from testCases_v2 import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
get_ipython().magic('matplotlib inline')
np.random.seed(1)
# ## 2 - Dataset ##
X, Y = load_planar_dataset()
# Visualize the data:
plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);
shape_X = np.shape(X)
shape_Y = np.shape(Y)
m = np.shape(X)[1] # training set size
# ## 3 - Simple Logistic Regression
# Train the logistic regression classifier
clf = sklearn.linear_model.LogisticRegressionCV();
clf.fit(X.T, Y.T);
plot_decision_boundary(lambda x: clf.predict(x), X, Y)
# Print accuracy
LR_predictions = clf.predict(X.T)
print ('Accuracy of logistic regression: %d ' % float(
(np.dot(Y,LR_predictions) +
np.dot(1-Y,1-LR_predictions))
/float(Y.size)*100) +
'% ' + "(percentage of correctly labelled datapoints)")
# ## 4 - Neural Network model
def layer_sizes(X, Y):
n_x = np.shape(X)[0] # size of input layer
n_h = 4
n_y = np.shape(Y)[0] # size of output layer
return (n_x, n_h, n_y)
# ### 4.2 - Initialize the model's parameters ####
def initialize_parameters(n_x, n_h, n_y):
np.random.seed(2)
W1 = np.random.randn(n_h,n_x) * 0.01
b1 = np.zeros((n_h,1))
W2 = np.random.randn(n_y,n_h) * 0.01
b2 = np.zeros((n_y,1))
parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2}
return parameters
# ### 4.3 - The Loop ####
def forward_propagation(X, parameters):
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
Z1 = np.dot(W1, X) + b1
A1 = np.tanh(Z1)
Z2 = np.dot(W2, A1) + b2
A2 = sigmoid(Z2)
cache = {"Z1": Z1, "A1": A1, "Z2": Z2, "A2": A2}
return A2, cache
def compute_cost(A2, Y, parameters):
m = Y.shape[1] # number of example
logprobs = np.multiply(Y, np.log(A2)) + np.multiply(1-Y, np.log(1-A2))
cost = -(1/m)*np.sum(logprobs)
cost = np.squeeze(cost)
return cost
def backward_propagation(parameters, cache, X, Y):
m = X.shape[1]
W1 = parameters["W1"]
W2 = parameters["W2"]
A1 = cache["A1"]
A2 = cache["A2"]
dZ2 = A2 - Y
dW2 = (1/m) * np.dot(dZ2 , A1.T)
db2 = (1/m) * np.sum(dZ2, axis = 1, keepdims = True)
dZ1 = np.dot(W2.T , dZ2) * (1 - np.power(A1, 2))
dW1 = (1/m) * np.dot(dZ1 , X.T)
db1 = (1/m) * np.sum(dZ1, axis = 1, keepdims = True)
grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2}
return grads
def update_parameters(parameters, grads, learning_rate = 1.2):
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
dW1 = grads["dW1"]
db1 = grads["db1"]
dW2 = grads["dW2"]
db2 = grads["db2"]
W1 = W1 - learning_rate * dW1
b1 = b1 - learning_rate * db1
W2 = W2 - learning_rate * dW2
b2 = b2 - learning_rate * db2
parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2}
return parameters
def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
np.random.seed(3)
n_x = layer_sizes(X, Y)[0]
n_y = layer_sizes(X, Y)[2]
parameters = initialize_parameters(n_x, n_h, n_y)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
for i in range(0, num_iterations):
A2, cache = forward_propagation(X, parameters)
cost = compute_cost(A2, Y, parameters)
grads = backward_propagation(parameters, cache, X, Y)
parameters = update_parameters(parameters, grads)
return parameters
# ### 4.5 Predictions
def predict(parameters, X):
A2, cache = forward_propagation(X, parameters)
predictions = (A2 > 0.5)
return predictions
# Build a model with a n_h-dimensional hidden layer
parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)
# Plot the decision boundary
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plt.title("Decision Boundary for hidden layer size " + str(4))
# Print accuracy
predictions = predict(parameters, X)
print ('Accuracy: %d' % float(
(np.dot(Y,predictions.T) +
np.dot(1-Y,1-predictions.T))/
float(Y.size)*100) + '%')
plt.figure(figsize=(16, 32))
hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50]
for i, n_h in enumerate(hidden_layer_sizes):
plt.subplot(5, 2, i+1)
plt.title('Hidden Layer of size %d' % n_h)
parameters = nn_model(X, Y, n_h, num_iterations = 5000)
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
predictions = predict(parameters, X)
accuracy = float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100)
print ("Accuracy for {} hidden units: {} %".format(n_h, accuracy))
2018년 3월 22일 목요일
Neural Network (Week 2) : Logistic Regression
import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset
index = 25
plt.imshow(train_set_x_orig[index])
m_train = train_set_x_orig.shape[0]
m_test = test_set_x_orig.shape[0]
num_px = train_set_x_orig.shape[1]
train_set_x_flatten = train_set_x_orig.
reshape(train_set_x_orig.shape[0], -1).T
test_set_x_flatten = test_set_x_orig.
reshape(test_set_x_orig.shape[0], -1).T
def initialize_with_zeros(dim):
w = np.zeros((dim,1))
b = 0
return w, b
def propagate(w, b, X, Y):
m = X.shape[1]
# FORWARD PROPAGATION
A = sigmoid(np.dot(w.T,X)+b)
cost = -1/m*(np.dot(Y, np.log(A).T)
+ np.dot((1-Y), np.log(1-A).T))
# BACKWARD PROPAGATION
dw = 1/m*np.dot(X, (A-Y).T)
db = 1/m*np.sum(A-Y)
grads = {"dw": dw, "db": db}
return grads, cost
def optimize(w, b, X, Y, num_iterations,
learning_rate, print_cost = False):
costs = []
for i in range(num_iterations):
# Cost and gradient calculation
grads, cost = propagate(w,b,X,Y)
# Retrieve derivatives from grads
dw = grads["dw"]
db = grads["db"]
# update rule
w = w - learning_rate*dw
b = b - learning_rate*db
# Record the costs
if i % 100 == 0:
costs.append(cost)
params = {"w": w, "b": b}
grads = {"dw": dw, "db": db}
return params, grads, costs
def predict(w, b, X):
A = sigmoid(np.dot(w.T, X) + b)
for i in range(A.shape[1]):
if (A[0,i] > 0.5):
Y_prediction[0,i] = 1
else:
Y_prediction[0,i] = 0
assert(Y_prediction.shape == (1, m))
return Y_prediction
def model(X_train, Y_train, X_test,
Y_test, num_iterations = 2000,
learning_rate = 0.5, print_cost = False):
# initialize parameters
w, b = np.zeros((X_train.shape[0],1)), 0
# Gradient descent (≈ 1 line of code)
parameters, grads, costs = optimize(
w,b,X_train, Y_train, num_iterations,
learning_rate, print_cost)
# Retrieve parameters w and b
w = parameters["w"]
b = parameters["b"]
# Predict test/train set examples
Y_prediction_test = predict(w, b, X_test)
Y_prediction_train = predict(w,b,X_train)
# Print train/test Errors
print("train accuracy: {} %".format(
100 - np.mean(np.abs(
Y_prediction_train - Y_train)) * 100))
print("test accuracy: {} %".format(
100 - np.mean(np.abs(
Y_prediction_test - Y_test)) * 100))
d = {"costs": costs,
"Y_prediction_test": Y_prediction_test,
"Y_prediction_train" : Y_prediction_train,
"w" : w,
"b" : b,
"learning_rate" : learning_rate,
"num_iterations": num_iterations}
return d
learning_rates = [0.01, 0.001, 0.0001]
models = {}
for i in learning_rates:
print ("learning rate is: " + str(i))
models[str(i)] = model(train_set_x,
train_set_y, test_set_x, test_set_y,
num_iterations = 1500,
learning_rate = i, print_cost = False)
print ('\n' + "----------------------------" + '\n')
for i in learning_rates:
plt.plot(np.squeeze(models[str(i)]["costs"]),
label= str(models[str(i)]["learning_rate"]))
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset
index = 25
plt.imshow(train_set_x_orig[index])
m_train = train_set_x_orig.shape[0]
m_test = test_set_x_orig.shape[0]
num_px = train_set_x_orig.shape[1]
train_set_x_flatten = train_set_x_orig.
reshape(train_set_x_orig.shape[0], -1).T
test_set_x_flatten = test_set_x_orig.
reshape(test_set_x_orig.shape[0], -1).T
def initialize_with_zeros(dim):
w = np.zeros((dim,1))
b = 0
return w, b
def propagate(w, b, X, Y):
m = X.shape[1]
# FORWARD PROPAGATION
A = sigmoid(np.dot(w.T,X)+b)
cost = -1/m*(np.dot(Y, np.log(A).T)
+ np.dot((1-Y), np.log(1-A).T))
# BACKWARD PROPAGATION
dw = 1/m*np.dot(X, (A-Y).T)
db = 1/m*np.sum(A-Y)
grads = {"dw": dw, "db": db}
return grads, cost
def optimize(w, b, X, Y, num_iterations,
learning_rate, print_cost = False):
costs = []
for i in range(num_iterations):
# Cost and gradient calculation
grads, cost = propagate(w,b,X,Y)
# Retrieve derivatives from grads
dw = grads["dw"]
db = grads["db"]
# update rule
w = w - learning_rate*dw
b = b - learning_rate*db
# Record the costs
if i % 100 == 0:
costs.append(cost)
params = {"w": w, "b": b}
grads = {"dw": dw, "db": db}
return params, grads, costs
def predict(w, b, X):
A = sigmoid(np.dot(w.T, X) + b)
for i in range(A.shape[1]):
if (A[0,i] > 0.5):
Y_prediction[0,i] = 1
else:
Y_prediction[0,i] = 0
assert(Y_prediction.shape == (1, m))
return Y_prediction
def model(X_train, Y_train, X_test,
Y_test, num_iterations = 2000,
learning_rate = 0.5, print_cost = False):
# initialize parameters
w, b = np.zeros((X_train.shape[0],1)), 0
# Gradient descent (≈ 1 line of code)
parameters, grads, costs = optimize(
w,b,X_train, Y_train, num_iterations,
learning_rate, print_cost)
# Retrieve parameters w and b
w = parameters["w"]
b = parameters["b"]
# Predict test/train set examples
Y_prediction_test = predict(w, b, X_test)
Y_prediction_train = predict(w,b,X_train)
# Print train/test Errors
print("train accuracy: {} %".format(
100 - np.mean(np.abs(
Y_prediction_train - Y_train)) * 100))
print("test accuracy: {} %".format(
100 - np.mean(np.abs(
Y_prediction_test - Y_test)) * 100))
d = {"costs": costs,
"Y_prediction_test": Y_prediction_test,
"Y_prediction_train" : Y_prediction_train,
"w" : w,
"b" : b,
"learning_rate" : learning_rate,
"num_iterations": num_iterations}
return d
learning_rates = [0.01, 0.001, 0.0001]
models = {}
for i in learning_rates:
print ("learning rate is: " + str(i))
models[str(i)] = model(train_set_x,
train_set_y, test_set_x, test_set_y,
num_iterations = 1500,
learning_rate = i, print_cost = False)
print ('\n' + "----------------------------" + '\n')
for i in learning_rates:
plt.plot(np.squeeze(models[str(i)]["costs"]),
label= str(models[str(i)]["learning_rate"]))
2018년 3월 21일 수요일
Neural Network (Week 2) : Python Basics
def sigmoid(x):
s = 1/(1+np.exp(-x))
return s
def sigmoid_derivative(x):
s = 1/(1+np.exp(-x))
ds = s*(1-s)
return ds
def image2vector(image):
v = image.reshape(image.shape[0]*
image.shape[1]*image.shape[2], 1)
return v
def normalizeRows(x):
x_norm = np.linalg.norm(
x, ord=2, axis=1, keepdims=True)
x = x/x_norm
return x
def softmax(x):
x_exp = np.exp(x)
x_sum = np.sum(x_exp, axis=1,
keepdims=True)
s = x_exp / x_sum
return s
def L1(yhat, y):
loss = np.sum(abs(y-yhat))
return loss
def L2(yhat, y):
loss = np.dot((y-yhat),(y-yhat))
return loss
2018년 3월 20일 화요일
Neural Network (Week 3) : Summary
dA1 = W.t * dZ
n-1,m = n-1,n * n,m
Z = W*A1 에서
dW = (1/m) dZ * A1.t
n-1,m = n-1,n * n,m
Z = W*A1 에서
dW = (1/m) dZ * A1.t
2018년 3월 11일 일요일
Machine Learning (Week 3) : Logistic Regression
function g = sigmoid(z)
g = 1./(1.+exp(-z))
function [J, grad] = costFunction(theta, X, y)
A = sigmoid(X*theta);
J = (1/m) * sum(-y.*log(A) - (1.-y).*log(1.-A));
grad = (1/m) .* X' * (A - y);
function p = predict(theta, X)
p=round(sigmoid(X*theta));
%% Load Data
data = load('ex2data1.txt');
X = data(:, [1, 2]); y = data(:, 3);
[m, n] = size(X);
% Add intercept term to x and X_test
X = [ones(m, 1) X];
% Initialize fitting parameters
initial_theta = zeros(n + 1, 1);
% Set options for fminunc
options = optimset('GradObj', 'on', 'MaxIter', 400);
% Run fminunc to obtain the optimal theta
% This function will return theta and the cost
[theta, cost] = ...
fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);
function [J, grad] = costFunctionReg(theta, X, y, lambda)
A = sigmoid(X*theta);
theta1 = theta;
theta1(1,1) = 0;
reg = lambda/(2*m) * sum(theta1 .* theta1)
J = (1/m)*sum(-y.*log(A)-(1.-y).*log(1.-A)) + reg;
reg2 = lambda / (m) * theta;
reg2(1,1) = 0;
grad = (1/m).*X'*(A - y) + reg2;
g = 1./(1.+exp(-z))
function [J, grad] = costFunction(theta, X, y)
A = sigmoid(X*theta);
J = (1/m) * sum(-y.*log(A) - (1.-y).*log(1.-A));
grad = (1/m) .* X' * (A - y);
function p = predict(theta, X)
p=round(sigmoid(X*theta));
%% Load Data
data = load('ex2data1.txt');
X = data(:, [1, 2]); y = data(:, 3);
[m, n] = size(X);
% Add intercept term to x and X_test
X = [ones(m, 1) X];
% Initialize fitting parameters
initial_theta = zeros(n + 1, 1);
% Set options for fminunc
options = optimset('GradObj', 'on', 'MaxIter', 400);
% Run fminunc to obtain the optimal theta
% This function will return theta and the cost
[theta, cost] = ...
fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);
function [J, grad] = costFunctionReg(theta, X, y, lambda)
A = sigmoid(X*theta);
theta1 = theta;
theta1(1,1) = 0;
reg = lambda/(2*m) * sum(theta1 .* theta1)
J = (1/m)*sum(-y.*log(A)-(1.-y).*log(1.-A)) + reg;
reg2 = lambda / (m) * theta;
reg2(1,1) = 0;
grad = (1/m).*X'*(A - y) + reg2;
피드 구독하기:
글 (Atom)