import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset
index = 25
plt.imshow(train_set_x_orig[index])
m_train = train_set_x_orig.shape[0]
m_test = test_set_x_orig.shape[0]
num_px = train_set_x_orig.shape[1]
train_set_x_flatten = train_set_x_orig.
reshape(train_set_x_orig.shape[0], -1).T
test_set_x_flatten = test_set_x_orig.
reshape(test_set_x_orig.shape[0], -1).T
def initialize_with_zeros(dim):
w = np.zeros((dim,1))
b = 0
return w, b
def propagate(w, b, X, Y):
m = X.shape[1]
# FORWARD PROPAGATION
A = sigmoid(np.dot(w.T,X)+b)
cost = -1/m*(np.dot(Y, np.log(A).T)
+ np.dot((1-Y), np.log(1-A).T))
# BACKWARD PROPAGATION
dw = 1/m*np.dot(X, (A-Y).T)
db = 1/m*np.sum(A-Y)
grads = {"dw": dw, "db": db}
return grads, cost
def optimize(w, b, X, Y, num_iterations,
learning_rate, print_cost = False):
costs = []
for i in range(num_iterations):
# Cost and gradient calculation
grads, cost = propagate(w,b,X,Y)
# Retrieve derivatives from grads
dw = grads["dw"]
db = grads["db"]
# update rule
w = w - learning_rate*dw
b = b - learning_rate*db
# Record the costs
if i % 100 == 0:
costs.append(cost)
params = {"w": w, "b": b}
grads = {"dw": dw, "db": db}
return params, grads, costs
def predict(w, b, X):
A = sigmoid(np.dot(w.T, X) + b)
for i in range(A.shape[1]):
if (A[0,i] > 0.5):
Y_prediction[0,i] = 1
else:
Y_prediction[0,i] = 0
assert(Y_prediction.shape == (1, m))
return Y_prediction
def model(X_train, Y_train, X_test,
Y_test, num_iterations = 2000,
learning_rate = 0.5, print_cost = False):
# initialize parameters
w, b = np.zeros((X_train.shape[0],1)), 0
# Gradient descent (≈ 1 line of code)
parameters, grads, costs = optimize(
w,b,X_train, Y_train, num_iterations,
learning_rate, print_cost)
# Retrieve parameters w and b
w = parameters["w"]
b = parameters["b"]
# Predict test/train set examples
Y_prediction_test = predict(w, b, X_test)
Y_prediction_train = predict(w,b,X_train)
# Print train/test Errors
print("train accuracy: {} %".format(
100 - np.mean(np.abs(
Y_prediction_train - Y_train)) * 100))
print("test accuracy: {} %".format(
100 - np.mean(np.abs(
Y_prediction_test - Y_test)) * 100))
d = {"costs": costs,
"Y_prediction_test": Y_prediction_test,
"Y_prediction_train" : Y_prediction_train,
"w" : w,
"b" : b,
"learning_rate" : learning_rate,
"num_iterations": num_iterations}
return d
learning_rates = [0.01, 0.001, 0.0001]
models = {}
for i in learning_rates:
print ("learning rate is: " + str(i))
models[str(i)] = model(train_set_x,
train_set_y, test_set_x, test_set_y,
num_iterations = 1500,
learning_rate = i, print_cost = False)
print ('\n' + "----------------------------" + '\n')
for i in learning_rates:
plt.plot(np.squeeze(models[str(i)]["costs"]),
label= str(models[str(i)]["learning_rate"]))
댓글 없음:
댓글 쓰기